Status and prospects of the SoLi∂ experiment

Nick van Remortel

University of Antwerp, Belgium

On behalf of the SoLid Collab.

Solvay Workshop on 'Beyond the Standard model with Neutrinos and Nuclear Physics'

Dec 1, 2017

Motivation

 Resolve several anomalous effects in short baseline neutrino rates Resolve discussion on spectral features observed by long baseline reactor expts using common fuels (235U, 238U, 239Pu,241Pu)

Latest results and global fits: Nuclear effects or sterile neutrino ?

- Flux deficit is different for the 4 parent fission isotopes and 235U seems to be main source of the anomaly [Daya Bay, 1704.01082]
- New results (MINOS, IceCube, Daya Bay, DANSS, NEOS) don't rule-out sterile neutrino hypothesis [Gariazzo et al., 1703.00860 & Dentler et al., 1709.04294]
- Dentler et al., 1709.04294: "We find that the sterile neutrino hypothesis cannot be rejected based on global data and is only mildly disfavored compared to an individual rescaling of neutrino fluxes from different fission isotopes. The main reason for this is the presence of spectral features in recent data from the NEOS and DANSS experiments."

Daya Bay flux	[29]	8	individual fluxes for each isotope (EH1, EH2)	\checkmark
Bugey-3	[45]	35	spectra at 3 dist. with free bin-by-bin norm.	—
NEOS	[21, 26]	60	spectral ratio of NEOS and DayaBay	\checkmark
DANSS	[28]	30	spectral ratio at two distances	\checkmark
Daya Bay spect.	[46]	70	spectral ratios $EH3/EH1$ and $EH2/EH1$	\checkmark
KamLAND	[47]	17	spectrum at very long distance	—

Game for sterile neutrinos around $\Delta m^2 \approx 1 eV^2$ still on

Optimal experimental parameters

- Precise oscillation analysis in L and E
- Experimental design relying on:
 - Appropriate energy resolution O(10%) and calibration/linearity (2%)
 - Clean signal samples based on particle ID
 - Analysis of spectral shape&rate over appropriate baseline (0-10 meter)
 - Fine segmentation to allow detailed study of L dependence
- Reactor properties:
 - Sufficient power but compact core
 - Simple fuel mixture (pure 235U), constant over time
 - In wel controlled background environment, and reactor ON/OFF

Belgian Reactor 2 (BR2)@ SCK•CEN

SoLid $\bar{\nu}_e$ detector:

- 1.6 T fiducial
- Baseline: 6 8.5m •
- On-axis with reactor core •

Aluminum pressure Vessel

- 93.5% Enriched 235U
- Effective core diameter d=0.5m
- Peak power: 50-80 MW_{th}
- Duty cycle: ~ 150 days/year
- Low accidental background
- Small overburden : 10 mwe

SoLid timeline

2013

NEMENIX (8 kg)

- ► 4×4×4 cubes
- proof of concept
- neutron PID

SM1 (288 kg)

- ▶ 16×16×9 cubes
- 288 channels
- real scale system
- test scalability & production
- proved segmentation power

SoLid Phase I (1.6 t)

- ▶ 16×16×50 cubes
- 3200 channels
- optimized performances
- energy spectrum measurement
- oscillation search

SM1 data taking & operational stability

	Period 2015	Exposure Time
Reactor On	00:00 21 Feb → 08:00 24 Feb	50.9 hours
Reactor Off	00:00 01 Mar → 00:00 13 Mar and 00:00 01 Apr → 12:00 11 Apr	428.8 hours

+ Dedicated calibration campaigns with sources: 60Co, AmBe, 252Cf

SM1 highlights

intercalibration with muons

Neutron PID

SM1 highlights

- Energy resolution determined to be $\frac{\sigma_E}{\sqrt{E}} = 20\% \ at \ 1 \ MeV$
- Neutron detection efficiency was low: 2.5% driven by high thresholds to suppress noisy electronics
- Background rejection power of segmentation demonstrated
- Due to limited exposure and low eff no significant IBD excess observed
- BUT: Lots of lessons learned and many improvements made

Background spectrum measurement used for re-evaluation of SoLid sensitivity

From 300 kg to 1.6 Ton

Container $2.4 \times 2.6 \times 3.8 \text{ m}^3$:

- cooling down to 5°C to reduce SiPM dark count rate (~1/10)
- planes of 16x16 cubes
- 5 modules of 10 planes
- automated calibration system between modules

Shieldings:

- water walls:
 50 cm thick, 3.4 m high, 28 t
- polyethylene ceiling:
 50 cm thick, 6 t
- cadmium sheets

Construction & Integration: finished since oct 2017

Quality control: CALIPSO

- Automated scanner with active calibration head accommodating various neutron, electron/gamma sources:
- 207Bi, 22Na, 137Cs, 60Co, ...
- 235Cf, AmBe
- 16x16 cell plane in 4 hours

 22_{Na} Compton edge of 1270 keV gamma used for LY measurement

Optical performance

- Improve PVT cube quality and ٠ wrapping
- Double readout: from 2 to 4 fibers per cube
- Use double cladded fibers Impact:
- improved energy resolution from 20% to 12 % at 1 MeV
- Linear response
- Better uniformity of light ٠ response in detector: compensate attenuation in fibers

Light Yield Frame 3 [PA/MeV]

Neutron performance

- Doubling LiZnS with different backing
- Better light coupling to PVT cube
- Dedicated neutron trigger based on Peak-overtreshold (PoT)

Results:

- Increase neutron capture prob.: $65\% \rightarrow 80\%$
- \rightarrow High detection efficiency (O(60%))
- Shorten the neutron capture time: $90\mu s \rightarrow 65 \mu s$
- \rightarrow shorter IBD window and less accidentals
- Spot Li screen batches that are off-specifications.

30

40

- Relative variations in n-response<10%
- Several MC models, based in MCNO and G4 agree within errors

Plane number vs relative cube efficiency

Sensitivity

- SoLid stays with its initial sensitivity estimates, for which input parameters are now confirmed by measurements indicating we can do as good or better:
- Baseline 6.2-8.7 m: O(1500 $\overline{v_E}/day$)
- Thermal power 60 MWth
- Detector dimensions 0.8x0.8x2.5 m3
- Detector mass 1.6 t
- Energy resolution σ_E/\sqrt{E} =14 %
- IBD efficiency 30 %
- Signal to background 3:1
- Background spectrum taken from measurements with SM1 at BR2 in 2015

Beyond phase 1

- Possibility to extend SoLid1 with:
 - 1 extra module (320 kg extra fiducial mass)
 - 1-2 ton CHANDLER detector running alongside
- CHANDLER:
 - Raghavan Optical Lattice: wl. Shifter in Plastic and readout via total internal reflection
 - LiZnS sheets sandwiched in layers
 - Aiming at σ_E/\sqrt{E} =6 %
 - 1-2 Ton detector to be funded
- Mini-CHANDLER:
 - 2x8x5 readout channels
 - Deployed at North Anna 2.9 GW at 25 m since June 2017

Chandler performance

Conclusion

- SoLid has constructed Phase 1: a 1.6 Ton full scale detector with he aims of performing oscillation searches in 2018
- Sensitivity using this fiducial mass comparable with other experiments being staged
- Quality assurance and calibration measurements show excellent performance : uniformity, light yield, efficiencies, ...
- Backgrounds are already well understood and properly modeled using 2015-2016 data
- Phase 1 detector deployed at BR2 reactor since end October 2017
- BR2 reactor currently running at 60 MW_{th}
- Analysis tools and software, including reactor antineutrino spectrum predictions at the ready
- 4 out of 5 modules being commissioned as we speak, showing excellent performance:
 - 99% channels up and equalized,
 - various triggers deployed, including IBD
 - Cooldown of detector in progress
- Phase 2 based on improved energy resolution showing promising potential using small demonstrator
- Look out for news in the very near future

Short Baseline Reactor Experiments*

Experiment	Reactor Power/Fuel	Overburden (mwe)	Detection Material	Segmentation	Optical Readout	Particle ID Capability
DANSS (Russia)	3000 MW LEU fuel	~50	Inhomogeneous PS & Gd sheets	2D, ~5mm	WLS fibers.	Topology only
NEOS (South Korea)	2800 MW LEU fuel	~20	Homogeneous Gd-doped LS	none	Direct double ended PMT	recoil PSD only
nuLat (USA)	40 MW ²³⁵ U fuel	few	Homogeneous ⁶ Li doped PS	Quasi-3D, 5cm, 3-axis Opt. Latt	Direct PMT	Topology, recoil & capture PSD
Neutrino4 (Russia)	100 MW ²³⁵ U fuel	~10	Homogeneous Gd-doped LS	2D, ~10cm	Direct single ended PMT	Topology only
PROSPECT (USA)	85 MW ²³⁵ U fuel	few	Homogeneous ⁶ Li-doped LS	2D, 15cm	Direct double ended PMT	Topology, recoil & capture PSD
SoLid (UK Fr Bel US)	72 MW ²³⁵ U fuel	~10	Inhomogeneous ⁶ LiZnS & PS	Quasi-3D, 5cm multiplex	WLS fibers	topology, capture PSD
Chandler (USA)	72 MW ²³⁵ U fuel	~10	Inhomogeneous ⁶ LiZnS & PS	Quasi-3D, 5cm, 2-axis Opt. Latt	Direct PMT/ WLS Scint.	topology, capture PSD
Stereo (France)	57 MW ²³⁵ U fuel	~15	Homogeneous Gd-doped LS	1D, 25cm	Direct single ended PMT	recoil PSD